

Containers
Part Three

Outline for Today
● Stacks

● Pancakes meets parsing!
● Queues

● Playing some music!

Stack

Car 1Car 2Car 3

This car
can’t leave…

… until these
two do.

Thanks to Nick Troccoli for this example!

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

0
42

137
● Only the topmost element of a
Stack can be accessed.

● Do you see why we call it the
call stack and talk about stack
frames?

Stack

What does this code print?
Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');

while (!s1.isEmpty()) {
 s2.push(s1.pop());
}

while (!s2.isEmpty()) {
 cout << s2.pop() << endl;
}

s1 s2
'a' 'b' 'c'

Stack

● Technically speaking, anything you can do with a
Stack you can also do with a Vector.

● So why do we have the Stack type as well?
● Clarity: Many problems can be modeled elegantly

using a stack. Representing those stacks in code
with a Stack makes the code easier to understand.

● Error-Prevention: The Stack has fewer operations
than a Vector. If you’re trying to model a stack, this
automatically eliminates a large class of errors.

● Efficiency: Stacks can be slightly faster than
Vectors because they don’t need to support as
many operations. (More on that later in the
quarter.)

An Application: Balanced Parentheses

Our Algorithm
● For each character:

● If it’s an open parenthesis or brace, push it
onto the stack.

● If it’s a close parenthesis or brace:
– If the stack is empty, report an error.
– If the character doesn’t pair with the character

on top of the stack, report an error.
● At the end, return whether the stack is

empty (nothing was left unmatched).

More Stack Applications
● Stacks show up all the time in parsing, recovering the

structure in a piece of text.
● Often used in natural language processing; take CS224N for

details!
● Used all the time in compilers – take CS143 for details!
● There’s a deep theorem that says that many structures

appearing in natural language are perfectly modeled by
operations on stacks; come talk to me after class if you’re
curious!

● They’re also used as building blocks in larger algorithms
for doing things like
● making sure a city’s road networks are navigable (finding

strongly connected components; take CS161 for details!) and
● searching for the best solution to a problem – stay tuned!

Time-Out for Announcements!

MLK Weekend
● Some suggested reading / listening / watching

recommendations:
● “The Autobiography of Malcolm X,” as told to Alex Haley.
● “The Ballot or the Bullet” by Malcolm X.
● “Between the World and Me” by Ta-Nehisi Coates.
● “The Case for Reparations” by Ta-Nehisi Coates.
● “Debate at Cambridge Union,” James Baldwin and William F.

Buckley, Jr.
● “Do Artifacts Have Politics?” by Langdon Winner.
● “Letter from Birmingham City Jail” by Martin Luther King, Jr.
● “Letter from a Region in my Mind” by James Baldwin.
● “Notes on an Imagined Plaque” by The Memory Palace.
● “The Other America” by Martin Luther King, Jr.

Asynchronous Lecture
● We will not have class this upcoming

Monday in observance of the MLK
holiday.

● Monday’s lecture will instead be
prerecorded and available online on
Canvas starting at around 5PM today.

● Watch that lecture before we return for
Wednesday’s (in-person) lecture.

Assignment 2
● Assignment 1 was due today a 1:00PM.

● Need more time? Use one late day to extend the
deadline by 24 hours or two to extend it by 48 hours.

● Assignment 2 (Fun With Collections) goes out
today. It’s due next Friday at 1:00PM.
● Use collections to learn what language a text is written

in – and expand your mind about the world of human
language!

● Explore the impact of sea level rise on coastal regions!
● Have questions?

● Stop by the LaIR! Or ask on EdStem! Or email your
section leader!

Assignment 2
● This assignment contains a series of

short-answer ethics questions designed to
get you thinking about the social impact
of computing.

● It’s critical to think about the effect your
software has on others, especially given
the scale of modern software systems.

● These will form a part of your grade on
the assignment separately from your
functionality and style scores.

YEAH Hours
● We will be holding YEAH hours on Fridays

from 4:30PM – 5:30PM.
● Today’s will be in Durand 450.
● These are purely optional, but are great

ways to get an overview of the assignment
before you dive into it.

● Sessions will be recorded, and slides will be
made available for folks who can’t make it.

Discussion Sections
● Discussion sections have started! You should have received

an email with your section time and section leader’s name.
● Don’t have a section? You can sign up for any open section

by visiting
https://cs198.stanford.edu/

logging in via “CS106 Sections Login,” and picking a
section of your choice.

● Attendance is required.
● If you have a recurring conflict, contact Jonathan to discuss a

permanent swap.
● If you have one-off conflicts, email your section leader at least 24

hours in advance.

https://cs198.stanford.edu/

lecture.pop();

Queue

Queue

● A Queue is a data structure representing a
waiting line.

● Objects can be enqueued to the back of
the line or dequeued from the front of
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

42 271

Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');

while (!q1.isEmpty()) {
 q2.enqueue(q1.dequeue());
}

while (!q2.isEmpty()) {
 cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'

An Application: Looper

Loopers
● A looper is a device that records sound

or music, then plays it back over and
over again (in a loop).

● These things are way too much fun,
especially if you’re not a very good
musician. 😃

● Let’s make a simple looper using a Queue.

Building our Looper
● Our looper will read

data files like the one
shown to the left.

● Each line consists of
the name of a sound
file to play, along with
how many milliseconds
to play that sound for.

● We’ll store each line
using the SoundClip
type, which is defined
in our C++ file.

 G2.wav 690
 G2.wav 230
 Bb2.wav 230
 G2.wav 460
 G2.wav 460
 G2.wav 460
 G2.wav 230
 Bb2.wav 230
 G2.wav 230
 F2.wav 460

Building our Looper

Clip 1 Clip 2Clip 3 Clip 4 Clip 5

front

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.dequeue();
 playSound(toPlay.filename, toPlay.length);

 loop.enqueue(toPlay);
 }

Enjoying Our Looper

Feeling musical? Want to
contribute a loop for the next
iteration of CS106B? Send me
your .loop file and we’ll add it

to our collection!

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
 SoundClip toPlay = loop.pop();
 playSound(toPlay.filename, toPlay.length);

 loop.push(toPlay);
 }

What are you going to hear when we
use this version of the looper?

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

Your Action Items
● Read Chapter 5.2 and 5.3.

● These sections cover more about the Stack
and Queue type, and they’re great resources
to check out.

● Start Assignment 2.
● To follow our suggested timetable, start

working on Rosetta Stone and make good
progress on it by Monday.

Next Time (Virtually!)
● Thinking Recursively

● More elaborate recursive functions.
● Recursive Graphics

● Drawing intricate and beautiful figures with
very little code.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

