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Part Three



  

Outline for Today
● Stacks

● Pancakes meets parsing!
● Queues

● Playing some music!



  

Stack



  

Car 1Car 2Car 3

This car 
can’t leave…

… until these 
two do.

Thanks to Nick Troccoli for this example!



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top 
of the stack or popped from 
the top of the stack.
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● Only the topmost element of a 
Stack can be accessed.

● Do you see why we call it the 
call stack and talk about stack 
frames?



  

Stack

What does this code print?
Stack<char> s1, s2;
s1.push('a');
s1.push('b');
s1.push('c');
 

while (!s1.isEmpty()) {
  s2.push(s1.pop());
}
 

while (!s2.isEmpty()) {
  cout << s2.pop() << endl;
}

s1 s2
'a' 'b' 'c'



  

Stack

● Technically speaking, anything you can do with a 
Stack you can also do with a Vector.

● So why do we have the Stack type as well?
● Clarity: Many problems can be modeled elegantly 

using a stack. Representing those stacks in code 
with a Stack makes the code easier to understand.

● Error-Prevention: The Stack has fewer operations 
than a Vector. If you’re trying to model a stack, this 
automatically eliminates a large class of errors.

● Efficiency: Stacks can be slightly faster than 
Vectors because they don’t need to support as 
many operations. (More on that later in the 
quarter.)



  

An Application: Balanced Parentheses



  

Our Algorithm
● For each character:

● If it’s an open parenthesis or brace, push it 
onto the stack.

● If it’s a close parenthesis or brace:
– If the stack is empty, report an error.
– If the character doesn’t pair with the character 

on top of the stack, report an error.
● At the end, return whether the stack is 

empty (nothing was left unmatched).



  

More Stack Applications
● Stacks show up all the time in parsing, recovering the 

structure in a piece of text.
● Often used in natural language processing; take CS224N for 

details!
● Used all the time in compilers – take CS143 for details!
● There’s a deep theorem that says that many structures 

appearing in natural language are perfectly modeled by 
operations on stacks; come talk to me after class if you’re 
curious!

● They’re also used as building blocks in larger algorithms 
for doing things like
● making sure a city’s road networks are navigable (finding 

strongly connected components; take CS161 for details!) and
● searching for the best solution to a problem – stay tuned!



  

Time-Out for Announcements!



  

MLK Weekend
● Some suggested reading / listening / watching 

recommendations:
● “The Autobiography of Malcolm X,” as told to Alex Haley.
● “The Ballot or the Bullet” by Malcolm X.
● “Between the World and Me” by Ta-Nehisi Coates.
● “The Case for Reparations” by Ta-Nehisi Coates.
● “Debate at Cambridge Union,” James Baldwin and William F. 

Buckley, Jr.
● “Do Artifacts Have Politics?” by Langdon Winner.
● “Letter from Birmingham City Jail” by Martin Luther King, Jr.
● “Letter from a Region in my Mind” by James Baldwin.
● “Notes on an Imagined Plaque” by The Memory Palace.
● “The Other America” by Martin Luther King, Jr.



  

Asynchronous Lecture
● We will not have class this upcoming 

Monday in observance of the MLK 
holiday.

● Monday’s lecture will instead be 
prerecorded and available online on 
Canvas starting at around 5PM today.

● Watch that lecture before we return for 
Wednesday’s (in-person) lecture.



  

Assignment 2
● Assignment 1 was due today a 1:00PM.

● Need more time? Use one late day to extend the 
deadline by 24 hours or two to extend it by 48 hours.

● Assignment 2 (Fun With Collections) goes out 
today. It’s due next Friday at 1:00PM.
● Use collections to learn what language a text is written 

in – and expand your mind about the world of human 
language!

● Explore the impact of sea level rise on coastal regions!
● Have questions?

● Stop by the LaIR! Or ask on EdStem! Or email your 
section leader!



  

Assignment 2
● This assignment contains a series of 

short-answer ethics questions designed to 
get you thinking about the social impact 
of computing.

● It’s critical to think about the effect your 
software has on others, especially given 
the scale of modern software systems.

● These will form a part of your grade on 
the assignment separately from your 
functionality and style scores.



  

YEAH Hours
● We will be holding YEAH hours on Fridays 

from 4:30PM – 5:30PM.
● Today’s will be in Durand 450.
● These are purely optional, but are great 

ways to get an overview of the assignment 
before you dive into it.

● Sessions will be recorded, and slides will be 
made available for folks who can’t make it.



  

Discussion Sections
● Discussion sections have started! You should have received 

an email with your section time and section leader’s name.
● Don’t have a section? You can sign up for any open section 

by visiting
https://cs198.stanford.edu/

logging in via “CS106 Sections Login,” and picking a 
section of your choice.

● Attendance is required.
● If you have a recurring conflict, contact Jonathan to discuss a 

permanent swap.
● If you have one-off conflicts, email your section leader at least 24 

hours in advance.

https://cs198.stanford.edu/


  

lecture.pop();



  

Queue



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.
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Queue

● What does this code print?
Queue<char> q1, q2;
q1.enqueue('a');
q1.enqueue('b');
q1.enqueue('c');
 

while (!q1.isEmpty()) {
  q2.enqueue(q1.dequeue());
}
 

while (!q2.isEmpty()) {
  cout << q2.dequeue() << endl;
}

q1

q2

'a' 'b' 'c'



  

An Application: Looper



  

Loopers
● A looper is a device that records sound 

or music, then plays it back over and 
over again (in a loop).

● These things are way too much fun, 
especially if you’re not a very good 
musician. 😃

● Let’s make a simple looper using a Queue.



  

Building our Looper
● Our looper will read 

data files like the one 
shown to the left.

● Each line consists of 
the name of a sound 
file to play, along with 
how many milliseconds 
to play that sound for.

● We’ll store each line 
using the SoundClip 
type, which is defined 
in our C++ file.

  G2.wav 690
  G2.wav 230
  Bb2.wav 230
  G2.wav 460
  G2.wav 460
  G2.wav 460
  G2.wav 230
  Bb2.wav 230
  G2.wav 230
  F2.wav 460



  

Building our Looper

Clip 1 Clip 2Clip 3 Clip 4 Clip 5

front 

 Queue<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.dequeue();
   playSound(toPlay.filename, toPlay.length);

   loop.enqueue(toPlay);
 }



  

Enjoying Our Looper

Feeling musical? Want to 
contribute a loop for the next 
iteration of CS106B? Send me 
your .loop file and we’ll add it 

to our collection!



  

Changing our Looper

 Stack<SoundClip> loop = loadLoop(/* … */);
 while (true) {
   SoundClip toPlay = loop.pop();
   playSound(toPlay.filename, toPlay.length);

   loop.push(toPlay);
 }

What are you going to hear when we
use this version of the looper?

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev


  

Your Action Items
● Read Chapter 5.2 and 5.3.

● These sections cover more about the Stack 
and Queue type, and they’re great resources 
to check out.

● Start Assignment 2.
● To follow our suggested timetable, start 

working on Rosetta Stone and make good 
progress on it by Monday. 



  

Next Time (Virtually!)
● Thinking Recursively

● More elaborate recursive functions.
● Recursive Graphics

● Drawing intricate and beautiful figures with 
very little code.
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